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Abstract. We revisit the hard-spheres lattice gas model in the spherical approximation proposed
by Lebowitz and Percus. Although no disorder is present in the model, we find that the
short-range dynamical restrictions in the model induce glassy behaviour. We examine the off-
equilibrium Langevin dynamics of this model and study the relaxation of the density as well as
the correlation, response and overlap two-time functions. We find that the relaxation proceeds in
two steps as well as absence of anomaly in the response function. By studying the violation of
the fluctuation–dissipation ratio we conclude that the glassy scenario of this model corresponds
to the dynamics of domain growth in phase-ordering kinetics.

1. Introduction

The nature of slow relaxation in frustrated systems has seen a large increase of activity in
recent years. In particular much effort has been done in the study of relaxational dynamics
in spin glasses [1]. These are disordered systems where slow relaxation appears as a
consequence of the frustration induced by the disorder. At low enough temperatures the
system explores a rugged free-energy landscape with high-energy barriers, hence dynamics
is slowed down. But nature offers a large variety of systems where dynamics can be
exceedingly slow in the absence of disorder. Structural glasses are examples in this class of
system. When fast cooled, glasses do not crystallize and leave the undercooled liquid line
when the typical relaxation time exceeds the inverse of the cooling rate. A possible scenario
for the origin of the glassy state in the absence of quenched disorder has been recently
proposed in the framework of some solvable mean-field models [2, 3]. These models
show the existence of three characteristic temperatures: the melting first-order transition
temperatureTm, a dynamical transition temperatureTd reminiscent of a spinodal instability
and a thermodynamic glass transitionTs where the configurational entropy vanishes and
replica symmetry breaks [5]. A detailed study of the dynamical equations of these mean-
field models [4] shows that these indeed correspond to the mode-coupling equations of
Götze and collaborators for the structural glass problem [6]. One of the main results in this
approximation is the existence of a dynamical singularity (Td) where dynamics is arrested
and ergodicity broken. The existence of this singularity relies on the mean-field character
of such approximation and it would be highly desirable to understand how to include short-
range effects in the theory in a systematic way.
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To address this problem a study of solvable microscopic models was carried out to
give a better understanding of the mechanisms responsible for slow relaxation, the universal
properties of the off-equilibrium dynamics [10, 12] as well as its connections with the mode
coupling approach. In this paper we study the off-equilibrium behaviour of a solvable
spherical model introduced some time ago by Lebowitz and Percus [7]. The model does
not have disorder built in and is suitable for the study of the role of short-range dynamical
constraints in glassy systems. We will show that the off-equilibrium behaviour of this model
shares the same common features (and in some sense, belongs to the sameuniversality
class) as those mean-field spin-glass models characterized by the absence of anomaly in
the response function. Quite remarkably the glassy scenario of the model corresponds to
the domain growth [19]. We should stress also that the model introduced by Lebowitz and
Percus [7] is not enough to provide a complete description of the glass transition where
phenomena such as stretching and the characteristic two-step form aboveTc in the liquid
(disordered) phase are absent. In the language of mode coupling theory this is due to the
absence of discontinuity atTc of the ergodicity parameter [6, 20].

However, this model still deserves our interest. The new feature which this model adds
to the study of glassy dynamics are the effects of dimensionality and short-range dynamical
constraints in the mechanisms for glassy dynamics. This kinetic effect has been proposed
in the past as a possible explanation of the glass transition [9]. The Lebowitz–Percus (LP)
model incorporates the effect of spatial correlations in the system. This allows for an
extension of the dynamical equations to include the wave vector dependency.

The paper is divided as follows. In section 2 we define the model as well as
its thermodynamic properties and write down the dynamical equations in the Langevin
approach. In section 3 we close the dynamical equations for one-time quantities. Section 4
presents the solution of the dynamical equations for the correlation, response and overlap
two-time functions. Section 5 discusses some numerical experiments of the model which
allow for a clear identification of the glassy scenario. Section 6 discusses the nature of
relaxation processes as well as violations of the fluctuation–dissipation relation. Finally we
present the main conclusions.

2. The LP model

Let us consider a lattice gas in the spherical approach. Lattice-gas models are defined on
a lattice of finite dimensions where local densitiesρ(x) are attached to every site of the
lattice. In the hard-spheres lattice gas every site of the lattice can be either occupied or
empty. In this case the local densitiesρ(x) can take only the values 0 or 1. Lebowitz
and Percus [7] relaxed these conditions on the local densities and allowed them to take
any continuous value which satisfied a global spherical constraint. Following their work we
also introduce the additional restriction that the density–density correlation function between
nearest neighbours vanishes. This restriction mimics some kind of extended hard core. So
the restrictions on the system are,

σ1 ≡
∑
x

ρ(x)2−
∑
x

ρ(x) = 0 (1)

σ2 ≡
∑
x

∑
q

ρ(x)ρ(x+ q) = 0 (2)

wherex is a discrete variable that runs over the sites of aD-dimensional lattice andq are
the vectors that join a site to its nearest neighbours. The thermodynamics of this system
is very well known for the general case considered by Lebowitz and Percus [7] where a
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pairwise interaction potential was also studied. For simplicity, we will not introduce here
any interaction potential between particles or additional restrictions over the local densities.
We will see that in this case the dynamics of the model is simply enough to be solvable,
displaying a non-trivial relaxational dynamics. Short-range dynamical constraints are such
that relaxation turns out to be slow when a reorganization of local densities is necessary
to reach the equilibrium density of the system. We start by solving the thermodynamics.
After, we define the dynamical equations of the model and find the stationary solutions of
the dynamics.

2.1. The thermodynamics

In the grand canonical ensemble the partition function of the LP model is given by,

ZGC =
∞∑
n=1

znQn(β) (3)

andQn(β) is the partition function computed in the canonical ensemble,

Qn(β) =
∑
{ρl}′

δσ1,0δσ2,0 (4)

where σ1 and σ2 have been defined previously in equations (1) and (2). The prime in
the sum of equation (4) indicates that the set of densities{ρl} satisfy the global constraint∑N

l=1 ρl = n wheren is the total number of particles andN the total number of sites in the
lattice. Note that the thermodynamics of this system is determined solely by the entropy
because there is no interaction energy between the particles (as in the general case of hard-
spheres systems [13]). Substituting the canonical partition function equation (4) into the
grand-partition function equation (3) we obtain in the largen,N limit with n/N fixed,

ZGC =
∞∑

ρl=−∞

N∏
l=1

zρl δ(σ1)δ(σ2). (5)

Introducing the integral representation of the delta function we obtain,

Z =
∫ N∏

l=1

dρl

∫
exp

[
β
∑
l,l′
Ĉ(xl, xl′)ρl(1− ρl′)+

∑
l

γρl

]
(6)

where z is the fugacityz = exp(γ ) = exp(µβ) and Ĉ(xl, xl′) = λ(xl − xl′). In our
case,λ(xl − xl′) = λ0 when xl = xl′ and λ(xl − xl′) = λ1 when xl − xl′ = q, otherwise
λ(xl − xl′) = 0.

The quadratic exponent can be diagonalized using the Fourier transform and the partition
function can be exactly evaluated in terms of the Lagrange multipliers. The equations
for the multipliers can be obtained noting that∂ logZ

∂λ0
= σ1 and ∂ logZ

∂λ1
= σ2 which yield

equations (1) and (2). Using these constraints we obtain the following equations for the
Lagrange multipliers,

1

N

∑
k

T
cos(kx)

2λ̃(k)
= 〈ρ〉[δ(x)− 〈ρ〉] (7)

λ̃(k) = λ0+ 2λ1

∑
q

cos(k · q) (8)

wherex = 0 orx = qi with i = 1,D. In what follows we will drop out the brackets in the
notation for the average density writingρ instead of〈ρ〉. These equations can be readily
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solved. In the disordered high-temperature phase equation (7) takes the simple form,

1

(2π)D

∫ 2π

0
dkD

T cos(k · x)
2λ̃

= ρ(δ(x)− ρ) (9)

where againx = 0 or x = qi , (16 i 6 D). A condensation-phase transition is found above
two dimensions. This result can be easily inferred after examination of equations (7) and (8).
The phase transition corresponds to the condensation in theKc = π(1, 1, . . . ,1) direction
due to the positivity ofλ0 andλ1. At the transition point̃λ(K) = 0, i.e.λ0 = 2λ1D = λ.
The critical temperatureTc and the value of the Lagrange multiplierλ are solutions to the
equations,

1

(2π)D

∫ 2π

0
dkD

Tc cos(k · x)
2λ(1+ 1

D

∑
q cos(k · q))

= ρ(δ(x)− ρ) (10)

x = 0 or x = qi , (1 6 i 6 D). Below the critical temperature, condensation on the mode
K = π(1, 1, . . . ,1) develops and the Lagrange multipliers remain fixed to their critical
values. The condensed massaK as a function of temperature satisfies the equation,

aK cos(K · x)+ 1

(2π)D

∫ 2π

0
dkD

T cos(k · x)
2λ(1+ 1

D

∑
q cos(k · q))

= ρ(δ(x)− ρ) (11)

wherex = 0, qi , (1 6 i 6 D). The mechanism for the condensation transition in the LP
model is the same as in the spherical model of Berlin and Kac [14] and appears only for
D > Dl = 2 which is the lower critical dimension of the model. ForD = 3 previous
equations can be solved and we findTc = 20.158. We should also note that the entropy
of this model diverges as log(T ) at low temperatures, hence violating the third law of
thermodynamics. This implies a finite specific heat and a finite compressibility at zero
temperature. However, it is not a serious drawback since it is related to the continuous
character of the local densities. To suppress this undesirable effect one should include
quantum effects [11] but this is beyond the scope of the present paper.

2.2. The dynamics

The effective Hamiltonian of the LP model which takes into account the restrictions (1) and
(2) imposed on the system reads,

Heff({x}) = λ0(t)
∑
x

(ρ(x)2− ρ(x))+ λ1(t)
∑
x

nv∑
l=1

ρ(x)ρ(x+ ql) (12)

wherenv is the number of nearest neighbours, andql are the vectors that join each point
with their nearest neighbours.

We propose the following differential equation for the dynamical evolution of the density
in an open system that can interchange particles with a reservoir,

∂ρ(x′, t)
∂t

= µ− ∂Heff({x}, t))
∂x′

+ η(x′, t) (13)

whereβ is the inverse temperature andµ is the chemical potential of the thermal bath.
η(x, t) is a white noise uncorrelated in time and space such that〈η(x, t)〉 = 0 and
〈η(x, t)η(x′, t ′)〉 = 2T δ(x − x′)δ(t − t ′) where the brackets indicate realizations over
the thermal noise. From now on, we will only specify the temporal dependence when
two different times appear dropping the explicit time dependence for one-time dynamical
quantities.
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We stress that in the LP model there is no energy but only entropy and that the role of the
parametersλ0(t), λ1(t) in the effective Hamiltonian equation (12) is to make the dynamical
evolution for the densities to fulfill the dynamical constraints equations (1) and (2) for all
times. Note that the role of the chemical potential(µ > 0) in the dynamical equation (13) is
to increase the local densities in the lattice as much as possible. Obviously the density cannot
increase indefinitely because of the dynamical constraints. Starting from an empty lattice the
dynamics turns out to be slow when the density of the system approaches the equilibrium
density. This slowing down is a purely entropic effect and is a direct consequence of the
decrease in the number of available configurations in phase space. In the rest of the paper
and without loss of generality, we can set the chemical potential equal to 1 in (13). The
dynamical equations read,

ρ̇(x) = 1− λ0(2ρ(x)− 1)− λ1

∑
l

(ρ(x+ ql)+ ρ(x− ql))+ η(x). (14)

Due to the spatial translational invariance, it is easy to diagonalize the system using the
Fourier transform,

ρ̃(k) = 1√
N

∑
r

exp(ik · r)ρ(r). (15)

The Fourier transformed global restrictions (1) and (2) are,

σ1 =
∑
k

|ρ̃(k)|2−
√
Nρ̃(0) = 0 (16)

σ2 = D
∑
k

|ρ̃(k)|2γ (k) = 0 (17)

with γ (k) = 1
D

∑D
l=1 cos(k · ql). In terms of the Fourier components the effective

Hamiltonian equation (12) is diagonal,

H(ρ(k)) = λ0(t)

(∑
k

|ρ̃(k)|2−
√
Nρ̃(0)

)
+ 2Dλ1(t)

∑
k

|ρ̃(k)|2γ (k) (18)

and the equations of motion for the Fourier-transformed densities are

˙̃ρ(k) =
√
Nδ(k)− λ0(2ρ̃(k)−

√
Nδ(k))− 4λ1Dρ̃(k)γ (k)+ η̃(k) (19)

η̃(k) = 1√
N

∑
x

exp(ik · x)η(x). (20)

This set of equations involve different uncoupled Fourier modes and can be formally
integrated for each mode as in the Sherrington–Kirkpatrick (SK) spherical model [16]. It
will be shown in section 3 that we will follow a different strategy and write a linear partial-
differential equation for the evolution of the density. Before this we will find the stationary
states of the dynamics, and, due to the absence of disorder, we can also investigate the
existence of crystal states in the system.

2.2.1. Stationary states.The stationary states of the model can be obtained by setting to
zero the time derivative in (19) and multiplying the equation by the complex conjugate of
ρ̃. This yields,

|ρ̃eq(k)|2 = T + δ(k)Nρ(λ0+ 1)

2λ0+ 4Dλ1γ (k)
(21)
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where we have used the regularization of the response function [8],

lim
t ′→t
〈η(t ′)ρ(t)〉 = 2T2(t − t ′) (22)

〈η(t ′)ρ(t ′)〉 = T . (23)

Using that|ρ̃(0)|2 = Nρ2, we note that

ρ = λ0+ 1

2λ0+ 4Dλ1
+O

(
1

N

)
. (24)

The restrictions,σ1 = 0 andσ2 = 0 equations (16) and (17) yield,

1

N

∑
k

T

2λ0+ 4λ1Dγ (k)
= ρ(1− ρ) (25)

1

N

∑
k

T γ (k)

2λ0+ 4Dλ1γ (k)
= −ρ2. (26)

These are the equations originally derived by Lebowitz and Percus [7] for the
thermodynamics described in section 2.1. At finite temperature we find that the only
stationary solutions are given by the equilibrium states. This is not true at zero temperature
where ergodicity is broken. In this case we expect the appearance of several crystalline
states which nevertheless are metastable at finite temperature. Note that the phase transition
in this model is different from the usual structural glass transformation where there is a
melting first-order phase transition from a liquid to a crystal state. In the LP model the
transition is a condensation one forD > 2 without any latent heat.

2.2.2. Crystalline states.At zero temperature, we note that there are many stationary
states (its number being proportional to the size of the systemN ). These can be obtained
by settingT = 0 in equation (19) which yields, after multiplying the equation by the
complex conjugate of̃ρ,

(2λ0+ 4Dλ1γ (k))|ρ̃(k)|2 = Nρδ(k)(1+ λ0). (27)

For k = 0 this equation yields(2λ0 + 4λ1D)ρ = (1+ λ0) but for k 6= 0 we find different
solutions depending on the value ofk and−k where the term(2λ0+4λ1Dγ (k)) vanishes.
Then the crystal states are characterized by a non-vanishing value ofρ̃(0), ρ̃(k) and
ρ̃(−k) = ρ̃(k)∗, all the other modes being zero. The first term is the average density
of particles while the second and third terms yield the crystal configuration. We still have
to impose the conditionsσ1 = 0 andσ2 = 0 equations (16) and (17). Then we obtain that
γ (k) should be smaller than zero for such a solution to exist. We also obtain thatλ0 = 1,
and 2λ1D = − 1

γ (k)
(with k different from zero) and the equilibrium density is given by,

ρ = γ (k)

γ (k)− 1
. (28)

The number of stationary states is then proportional to the volume of the lattice since for
each value ofk such thatγ (k) < 0 there is a stationary state. We will not extend further on
details about the crystalline ground states but limit our discussion to the one-dimensional
case. In this case, the simplest way to construct crystalline states is to assign a density
equal to one to each point in the lattice for everyp site. If p is a prime number, in the
resulting periodic configuration onlỹρ(k = 0), ρ̃(k = 2π/p) and ρ̃(k = 2π(1− 1

p
)) are

different from zero. Then, the conditionγ (k) < 0 implies thatk lies in the interval( π2 ,
3π
2 ).

So, only the states withp = 2 (maximum filling of the latticeρ = 1
2) andp = 3 (partial
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filling of the lattice withρ = 1
3) are crystal states and fulfill the dynamical restrictions. All

other periodic states with a larger value ofp haveγ (k) > 0 and decay to a newk state
with γ (k) < 0.

3. The dynamical solution for one-time quantities

To study the relaxation towards the equilibrium, we will focus our attention in the one-
time quantities as the density. We will need them later to study the evolution of two-
time quantities (correlation function, response function and the overlap among replicas).
Dynamics is such that the global constraintsσ1 = 0 (16) andσ2 = 0 (17) are satisfied for
all times, henceσ̇1 = 0 andσ̇2 = 0. These conditions determine the time-dependent value
of the Lagrange multipliers.

2ρ − λ0+ 4Dλ1ρ − 1+ 2R0 = 0 (29)

λ0ρ − 4λ1DT2+ ρ + 2R1 = 0 (30)

whereρ is the average density (ρ = 〈ρ〉). The quantitiesTn are correlations density–density,
and theRn quantities are correlations density–noise. They are defined as follows,

Tn(t) = 1

N

∑
k

|ρ̃(k)|2γ (k)n (31)

Rn(t) = 1

2N

∑
k

(ρ̃(k)η̃∗(k)+ η̃(k)ρ̃∗(k))γ (k)n (32)

wheren is any integer number. Note that these quantities are invariant under translations
which is the main symmetry of the effective Hamiltonian equation (12). We will see the
usefulness of all these quantities later on. We can make some remarks on the values and
physical meaning of some of them. First, we note thatT0 is (due to the spherical restriction)
equal to the average densityρ. T1 is proportional to the first-neighbour correlation, which
is equal to zero.T2 is some kind of second-neighbour correlation. This is a time-dependent
quantity that needs to be calculated in order to solve the evolution of the density. We will
see that the time evolution of the quantityT2 depends onT3, thatT3 depends onT4 and so
on. In the thermodynamic limit and using the regularization of the noise-field correlation
(23) we find for theRn,

Rn(t) = T 1

N

∑
k

γ (k)n (33)

which are time-independent quantities vanishing for odd values ofn.
We are now interested in the evolution of the average density of the system. Taking

into account that〈η〉 is of order O( 1√
N
); we obtain,

ρ̇ = 1− λ0(2ρ − 1)− 4Dλ1ρ. (34)

In order to solve the equations for the evolution of the density (29), (30), (34), we need
to know the dependence ofT2 on time. It is easy to write the dynamical equations forTn,

Ṫn = 2ρ(1+ λ0)− 4λ0Tn − 8Dλ1Tn+1+ 2Rn. (35)

As previously said, eachTn depends onTn+1. To close this hierarchy of equations, we
multiply all of them by 1

n! x
n and sum overn. DefininggT (x, t) =

∑∞
n=0

xn

n! Tn(t) and using



7096 F G Padilla and F Ritort

that ∂gT (x,t)
∂x
=∑∞n=0

xn

n! Tn+1(t), we get a partial-differential equation forgT (x, t),

∂gT (x, t)

∂t
= −8Dλ1

∂gT (x, t)

∂x
− 4λ0gT (x, t)+ 2ρ(1+ λ0)e

x + 2gN(x)

gN(x) =
∑
n

1

n!
xnRn = T

N

∑
k

exp(xγ (k)).
(36)

We can formally integrate this partial-differential equation using the method of the
characteristic curves,

gT (t, x) = g0

(
x −

∫ t

0
8Dλ1 dt ′

)
exp

(
−
∫ t

0
4λ0 dt ′

)
+
∫ t

0

[
2ρ(1+ λ0) exp

(
x −

∫ t

t ′
8Dλ1 dt ′′

)
+ 2gN

(
x −

∫ t

t ′
8Dλ1 dt ′′

)]
× exp

(
−
∫ t

t ′
4λ0 dt ′′

)
dt ′ (37)

where theg0 function is determined by the initial condition,gT (0, x) = g0(x). Once the
value ofgT (t, x) is known, we can obtain the different elements of the hierarchy by taking
derivatives with respect tox, Tn(x, t) = ∂ngT (x,t)

∂xn
|x=0.

4. The hierarchy of equations for two-time quantities

In this section, we write the dynamical equations for the correlation, response and overlap
functions. These are defined by,

G(t, t ′,x) = 1

N

∑
x′
ρ(x′ + x, t)η(x′, t ′) = 1

N

∑
k

ρ̃(k, t)η̃(−k, t ′) exp(ik · x) (38)

C(t, t ′,x) = 1

N

∑
x′
ρ(x′ + x, t)ρ(x′, t ′) = 1

N

∑
k

ρ̃(k, t)ρ̃(−k, t ′) exp(ik · x) (39)

Q(t, t ′) = 1

N

∑
x′
ρ1(x

′ + x, t)ρ2(x
′, t) = 1

N

∑
k

ρ̃1(k, t)ρ̃2(−k, t). (40)

C(t, t ′) (39) is the density–density correlation function and measures how fast the
configurations decorrelate in time. The response function (38) measures the change of
the local density in a point of the lattice at timet when the chemical potential is locally
changed in another point of the lattice at distancex at timet ′†. Finally the overlap function
(40) measures how fast two different copies of the system (initially in the same configuration
at t ′, i.e. ρ1(x, t) = ρ2(x, t

′)) decorrelate in time when submitted to different realizations
of the noise fort > t ′ [16, 22]. From now on and in the rest of the paper we will take the
conventiont > t ′. To obtain their time evolution we proceed as in the case of the density
and define hierarchies for two-time quantities as follows,

Gn(t, t
′,x) = 1

N

∑
k

ρ̃(k, t)η̃(−k, t ′)γ (k)n cos(k · x) (41)

Cn(t, t
′,x) = 1

N

∑
k

ρ̃(k, t)ρ̃(−k, t ′)γ (k)n cos(k · x) (42)

† Compared with the usual definition of the response function∂ρ(x′+x,t)
∂η(x′,t ′) both definitions differ only by a factor

of T .
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Qn(t, t
′) = 1

N

∑
k

ρ̃1(k, t)ρ̃2(−k, t)γ (k)n. (43)

Using (19) we get the following equations,

∂Gn

∂t
(t, t ′,x) = −4Dλ1(t)Gn+1(t, t

′,x)− 2λ0(t)Gn(t, t
′,x) (44)

∂Cn

∂t
(t, t ′,x) = −4Dλ1(t)Cn+1(t, t

′,x)− 2λ0(t)Cn(t, t
′,x)+ ρ(t ′)(1+ λ0(t)) (45)

∂Qn

∂t
(t, t ′) = −8Dλ1(t)Qn+1(t, t

′)− 4λ0(t)Qn(t, t
′)+ 2ρ(t)(1+ λ0(t)). (46)

For the response function we have〈ρ(t ′)η(t)〉 = 0. Defining the following generating
functions,

0G(t, t
′,x, y) =

∞∑
n=0

yn

n!
Gn(t, t

′,x) (47)

0C(t, t
′,x, y) =

∞∑
n=0

yn

n!
Cn(t, t

′,x) (48)

0Q(t, t
′, y) =

∞∑
n=0

yn

n!
Qn(t, t

′) (49)

we can close the hierarchies (47)–(49),

∂0G

∂t
(t, t ′,x, y) = −4Dλ1(t)

∂0G

∂y
(t, t ′,x, y)− 2λ0(t)0G(t, t

′,x, y) (50)

∂0C

∂t
(t, t ′,x, y) = −4Dλ1(t)

∂0C

∂y
(t, t ′,x, y)− 2λ0(t)0C(t, t

′,x, y)+ ρ(t ′)(1+ λ0(t))e
y

(51)
∂0Q

∂t
(t, t ′, y) = −8Dλ1(t)

∂0Q

∂y
(t, t ′, y)− 4λ0(t)0Q(t, t

′, y)+ 2ρ(t)(1+ λ0(t))e
y. (52)

The initial condition in equations (41)–(43) is obtained by settingt = t ′. Using the
regularization of the field–noise correlation att = t ′ (23), the initial condition for the
response function0(0)G (t

′,x, y) is given by

0
(0)
G (t

′,x, y) = 0G(t ′, t ′,x, y) =
∞∑
n=0

yn

n!

T

N

∑
k

γ (k)n cos(k · x). (53)

For the correlation function, we have,

0
(0)
C (t

′,x, y) = 0C(t ′, t ′,x, y) =
∞∑
n=0

yn

n!

1

N

∑
k

|ρ̃(k, t ′)|2γ (k)n cos(k · x). (54)

In particular, forx = 0 we have0(0)C (t
′, 0, y) = gT (t ′, y). So we must use the generating

function for the density as the initial condition for the generating function of the correlation.
The same initial condition needs to be used for the generating function for the overlap

between replicas,

0
(0)
Q (t

′, y) = 0Q(t ′, t ′, y) = gT (t ′, y). (55)

Equations (50)–(52) with their initial conditions (53)–(55) can be formally solved as we
did for the generating function for the hierarchy of the density (36).
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4.1. The equilibrium solution

Using the integral expressions for0C , 0G and 0Q, we can find the equilibrium values
for the two-time quantities. In equilibrium,ρ, λ0 and λ1 are time independent, and the
integral expressions can be simplified. Imposing also the equilibrium solutions as the initial
condition and using equation (21) we get the following results,

0
eq
C (t, t

′,x, y) = 1

N

∑
k

T cos(k · x) exp((y − 4Dλ1(t − t ′))γ (k)− 2λ0(t − t ′))
2λ0+ 4Dλ1γ (k)

+ρ2 exp(y) (56)

0
eq
G (t, t

′,x, y) = 1

N

∑
k

T cos(k · x) exp((y − 4Dλ1(t − t ′))γ (k)− 2λ0(t − t ′)) (57)

0
eq
Q (t, t

′,x, y) = 1

N

∑
k

T cos(k · x) exp((y − 8Dλ1(t − t ′))γ (k)− 4λ0(t − t ′))
2λ0+ 4Dλ1γ (k)

+ρ2 exp(y). (58)

It can be readily seen that the equilibrium solution is time-translational invariant and
that the fluctuation dissipation theorem (FDT) for the generating function is satisfied, i.e.
∂0C(t,t

′,x,y)
∂t ′ = 0G(t, t ′,x, y). This implies the validity of the FDT for any of the elements

of the hierarchy of equations. In particular, for the usual response and correlation functions
we get ∂C0(t,t

′,x)
∂t ′ = G0(t, t

′,x). Also we note that0eq
C (2(t − t ′),x, y) = 0eq

Q (t − t ′,x, y)
as expected [22].

In the thermodynamic limit the previous discrete sums in equations (56)–(58) become
integrals. In the condensed phase we obtain the following expressions,

0
eq
C (t − t ′,x, y) = aK cos(K · x) exp(y)+ 1

(2π)D

∫ 2π

0
dkD

×T cos(k · x) exp((y − 4Dλ1(t − t ′))γ (k)− 2λ0(t − t ′))
2λ(1+ 1

D

∑
g cos(k · q))

− ρ2 exp(y)

0
eq
G (t − t ′,x, y) = aK cos(K · x) exp(y)+ 1

(2π)D

∫ 2π

0
dkD

×T cos(k · x) exp((y − 4Dλ1(t − t ′))γ (k)− 2λ0(t − t ′))

0
eq
Q (t − t ′, y) = aK exp(y)+ 1

(2π)D

∫ 2π

0
dkD

×T exp((y − 8Dλ1(t − t ′))γ (k)− 4λ0(t − t ′))
2λ(1+ 1

D

∑
q cos(k · q))

− ρ2 exp(y)

(59)

where the values ofλ and aK are determined by equations (11). Above the critical
temperature in the disordered phase the expressions for0C , 0G and0Q are very similar to
the previous ones except for the Lagrange multipliers which do not verifyλ0 = 2Dλ1 and
aK = 0. In this case the Lagrange multipliers are determined by equations (9).

5. The dynamical solution

5.1. The general method

The solution to the previous equations is quite involved in the off-equilibrium regime
and cannot be exactly calculated even if some results can be obtained in the asymptotic
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long-time limit. While it is possible to simplify the analytical expressions using Laplace
transformations the analytical analysis of the dynamical equations appears to be tedious.
Here we follow a different and more straightforward strategy and numerically investigate
the solution of the dynamical equations. To understand the nature of the off-equilibrium
behaviour of the model we have numerically integrated the dynamical equations by
truncating the hierarchy up to a given finite number of elements. We have investigated the
casesD =1 and 3. In the first case, there is no phase transition while there is a transition in
the second case. For the numerical integration of the equations we have considered between
100 and 500 elements of the hierarchy forD = 1 and between 5000 and 20 000 elements
in the condensed phase inD = 3 (where relaxation is slower). We note that all figures in
this section, when plotted in a logarithmic scale, are always in base log10. In all the cases,
the integration was performed with an Euler method of second order. Some of this results
were also tested with a fourth-order Euler method.

5.2. One-time quantities

5.2.1. Relaxation of the density.The first behaviour we can study is the relaxation of the
density to its equilibrium value. In one dimension we find that the relaxation is exponential
with time for T different from zero as expected in the disordered phase. ForT = 0, we
find different behaviours depending on the initial condition as found in the spherical SK
model [16]. If the initial condition has a macroscopic projection on the equilibrium state
then the relaxation is exponential. If the projection on the equilibrium state is zero, then
the density of the system relaxes to the equilibrium with a power law,t−1.

In three dimensions, starting from a non-equilibrium initial condition the system relaxes
exponentially fast above the critical temperature in the disordered phase. In the condensed
phase the relaxation is algebraic with at−1 power law (figure 1). The behaviour of the
density in the LP model is very similar to the relaxation of the energy in the disordered
spherical SK model [16].

5.2.2. Hysteresis effects.We have performed some temperature-cycling experiments in our
system. Starting from a random high-temperature configuration (forD = 3 we start above
the condensation transition temperature) we let the system equilibrate at this temperature
and later on we decrease the temperature at a finite rate. As far as we are mainly interested
in the slow-cooling regime, to integrate the equations we change the temperature in the
differential equations on constant steps of1T . The cooling rate is given byr = 1T

t∗ , where
t∗ is the time the system spends in a given constant temperature. We observe that the system
departs from the equilibrium line at a temperatureT ∗ which decreases as the cooling rate
decreases. The inverse of the cooling rate yields an estimate of the relaxation time at that
temperatureT ∗. Below T ∗ the system fails to relax to the equilibrium and remains at a
density lower than the equilibrium value. Once we reach zero temperature, we start to
increase it at the same rate. We find that the non-equilibrium line crosses the equilibrium
one which indicates that the system also fails to relax to the equilibrium but now it remains
at a density higher than the equilibrium value. Finally, the non-equilibrium line merges
again with the equilibrium line at a temperature of the same order ofT ∗. This behaviour
can be observed in one dimension (figure 2) as well as in three dimensions (figure 3). In
these experiments there is no apparent difference between the three- and the one-dimensional
case indicating that this is a general non-equilibrium effect unsensitive to the existence of
a phase transition. Similar effects are observed in the one-dimensional Ising model [17] as
well as in the Backgammon model [18].
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Figure 1. Time dependent density in three dimensionsρeq−ρ (from top to bottom)T = 0.0001,
0.1, 1 and 10, with a homogeneous initial condition. The equilibrium density atT = 0.0001 is
0.499 950, atT = 0.1 is 0.454 950, atT = 1 is 0.309 017 and atT = 10 is 0.256 246.

5.2.3. Heating experiments.A striking feature of this system is that although no potential
energy has been introduced there appears to be a large number of stable crystalline states at
zero temperature which have an infinite lifetime. To see the effect of these crystalline states
on the dynamics we have done some heating experiments. AtT = 0 and in one dimension,
we have constructed different periodic crystalline initial conditions (putting the density
everyp sites equal to one). As we have shown in section 2.2, crystalline configurations
with p = 2, 3 are metastable states at zero temperature. Numerically we find that the
configurations wherep = 4 and 6 decay to the configurationp = 2, and thatp = 5 and 7
does not decay top = 2 or p = 3, but to solutions with densities between1

2 (p = 2) and 1
3

(p = 3). These results are simply explained noting that, although the restrictionσ2 = 0 is a
global one, apparently the only way to fulfill this restriction is imposing that every occupied
site is surrounded by empty sites.

At finite temperature, the metastable states have a finite lifetime and decay to the
equilibrium state. However, at low temperatures, the lifetime of metastable states can be
very large and their effects on the dynamics can then be observed. Suppose we prepare
the system in such a way that the initial condition belongs to the basin of attraction of
one of these stationary states. If we perform a heating experiment in which we raise the
temperature of the system at a finite rate, then we find that the system is trapped for some
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Figure 2. A cooling experiment in one dimension; density versus temperature. We show the
equilibrium value for density (full curve) and the value for the density at different cooling rates.
These are (from top to bottom) 0.1, 0.01 and 0.001.

time near the basin of attraction. In figure 4, we show the case where we start from a
non-metastable state withp = 5. We see that first it decays to the crystal state (the first
plateau seen in the figure) and later on it relaxes to the equilibrium line.

5.2.4. Kinetic growth. In the LP model, in contrast to the case of the spherical SK model
[15], it is possible to investigate kinetic-growth phenomena, i.e. how the condensed domains
grow as time goes by. This is interesting because it allows us to ascertain how relevant
is dimensionality in non-equilibrium phenomena. Let us consider the densities in Fourier
space equation (15). Using equation (19) we obtain its time evolution,

1

2

d|ρ̃(k)|2
dt

= Nδ(k)ρ − λ0(2|ρ̃(k)|2−Nδ(k)ρ)− 4λ1D|ρ̃(k)|2γ (k)+ T . (60)

Integrating this equation with the values for the Lagrange multipliers obtained from the
hierarchy of the density, we get the Fourier-transformed densities for the infinite system.
During the evolution from a non-equilibrium initial condition, we see how a peak around
k = π is formed (in three dimensions it is formed aroundk = (π, π, π)). As the temperature
decreases the peak becomes sharper. For a better understanding of the results, we can
appeal to the equilibrium relations. Using (21), (25) and (26) we can calculate an effective
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Figure 3. A cooling experiment in three dimensions; density versus temperature. We show the
equilibrium value for density (full curve) and the value for the density at different cooling rates.
These are (from top to bottom) 0.1, 0.01 and 0.001.

temperature for any|ρ̃(k)|2. Obviously, in equilibrium, all of them will have the same
effective temperature, the equilibrium one.

In figure 5, we show the values of the effective temperature for values ofk = k(1, 1, 1),
with k ranging from 0 toπ in the three-dimensional case (the figure is symmetric around
k = π ). For times larger than a typical timet∗ ' 1 a plateau appears in the effective
temperature and its value decays very fast toT , the temperature of the heat bath. For
values ofk ranging from zero up to a given valuekmax, all the modes have approximately
the same effective temperature which is the equilibrium one†. There is a given value of
k (let us call it k∗) where the effective temperature becomes infinite and above this value
of kmax the effective temperature is not defined. (This means that there does not exist an
equivalent equilibrium system described by the dynamical densities|ρ̃(k)|2.)

With the value ofkmax we can also estimate the correlation length using the relation
ξ ' 1

π−kmax
. We find that the correlation length diverges ast

1
2 typical of domain growth in

ferromagnets with non-conserved dynamics (figure 6).
The dynamics in the LP model can be intuitively understood in the framework of the

kinetic-growth scenario [19]. For times less thant∗ there is no plateau in the effective

† We have defined thiskmax as the value ofk in which the effective temperature is 10% larger than the average
value in the plateau.
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Figure 4. A heating experiment in one dimension; density versus temperature. Starting from a
five period one-dimensional crystal initial condition. We show the equilibrium value for density
(full curve) and the value for the density at different cooling rates. These are (from top to
bottom) 0.1, 0.01, 0.001 and 0.0001.

temperature because the system is nearly empty and the system is filling the lattice in a
random and uncorrelated way. As soon as the density becomes large enough, any change
of the density in a site of the lattice is correlated with that of the nearest neighbours and
any change in the density requires a reorganization of the local densities inside a given
domain. So, a critical and finite timet∗ is needed till the first domain appears. At times
larger thant∗ correlated domains start to grow in time. At length scales smaller than the
growing correlation lengthξ the system is in local equilibrium (the effective temperature
is the equilibrium temperature) while it is completely disordered (the effective temperature
is infinite) at larger length scales. The domain growth scenario is nicely reproduced in the
LP model.

5.3. Two-time quantities

5.3.1. The correlation and response functions.In this section, we are going to study the
correlation and response functions in equations (45) and (46) withx = 0. We consider the
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Figure 5. Effective temperatures versusk in three dimensions and atT = 0.1. It is shown for
different values of time: 0.01, 0.1, 1, 10, 100, 1000. The vertical line on the right of the plot
is k = π .

following normalized correlation function,

Cnorm(t, t
′) = C0(t, t

′, x = 0)− ρ2
eq

C0(t ′, t ′, x = 0)− ρ2
eq

= C0(t, t
′, x = 0)− ρ2

eq

ρ0− ρ2
eq

(61)

whereρ0 is the initial density at timet ′ andρeq is the equilibrium density corresponding
to the system at temperatureT . In what follows we redefine the time variablest ′ = tw and
consider the behaviour of correlation functions for different values oftw.

Our results confirm the simplest mode coupling scenario where relaxation proceeds in
two steps, theα and β relaxation processes. A comment now seems to be appropriate.
Originally mode coupling theory was devised to understand the equilibrium dynamics of
liquids in the vicinity of the glass transitions. Götze and collaborators [6] have proposed a
general mathematical framework for the understanding of equilibrium relaxational processes
which take place in the vicinity of a bifurcation instability. The model we propose here is a
very simplified version of the glass scenario where there is no discontinuity of the ergodicity
parameter in the bifurcation point (i.e. at the condensation-phase transition temperature). In
fact, aboveDl = 2 the LP model exhibits a usual second-order phase transition with
classical critical exponentsν = 1/(D − 2), η = 0 (D 6 4). The dynamical critical
exponent isz = 2 typical of mean-field theory. This implies that the relaxation time
diverges close to the transition temperatureTc like τ ∼ (T − Tc)

−2/(D−2). In the critical
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Figure 6. The inverse of the correlation length, 1/ξ , against time in three dimensions and at
T = 0.1 (dotted curve) and 1 (broken curve). The straight lines showt−1/2 behaviour.

point equilibrium time correlations decay liket−(D−2)/z, i.e. like t−1/2 for D = 3. Among
other results these scaling relations led naturally to the 1/t decay found in figure 1 for the
density in all dimensions at the critical point and below it. AboveTc the scaling behaviour
C(t) ∼ t−(D−2)/zf (t/τ ) holds whereτ is the divergent characteristic time scale and the
superposition principle is then valid. We want to stress that, in contrast to other scenarios
for glassy relaxations (see the discussion by Götze [20]) in this case there is only one
relaxation process aboveTc since there is not discontinuity in the ergodicity parameter at
Tc. However, it is quite interesting still to investigate the extension of the mode coupling
scenario to the off-equilibrium dynamics belowTc. In this case, it is necessary to consider
the initial time dependence in the dynamical equations. This implies the emergence, among
others, of new off-equilibrium phenomena such as aging, i.e. the dependence of the evolution
of the system on the initial time state. Also belowTc off-equilibrium correlation functions
are expected to display the characteristic two steps form since the ergodicity parameter (i.e.
the Edwards–Anderson parameter) is already finite.

We will considertw larger thant∗, i.e. the typical time needed to reach a macroscopic
density in the lattice starting from a nearly empty lattice. For values oftw < t∗, the system
is quite far from the asymptotic long-time regime and obviously the two-step form is hardly
seen. There are qualitative differences between the one- and three-dimensional cases since
in three dimensions there is a condensed phase while the system is always disordered in the



7106 F G Padilla and F Ritort

–2.0 0.0 2.0 4.0
log(t–tw)

0.0

0.2

0.4

0.6

0.8

1.0

C
(t

,t w
)

Figure 7. The correlation function versust − tw in three dimensions atT = 0.1. Different
waiting times are shown. From top to bottomtw = 10 000, 1000, 300, 100, 30, 10, 3, 1.

one-dimensional case. The off-equilibrium correlation function in three dimensions decays
in two steps: theβ process or stationary part with a decay to a plateau with at−1/2 and
the slowα process where the density–density correlation function decays liket−

3
2 . In the

β process the relaxation is stationary and depends only on the time differencet − tw while
in the slowα process there is aging and the correlation functions depend on botht and
tw (figure 7). The scaling behaviourt/tw is well reproduced in the off-equilibrium regime
(figure 8). In one dimension the behaviour is similar except for the plateau which is absent
(only a small inflexion for the correlation function at short times is observed). In three
dimensions the plateau persists over an arbitrarily long time scale which grows withtw
whereas for one dimension aging is interrupted and disappears whentw is of the order of
the finite relaxation time.

The dynamical scenario in the LP model can be inferred from a study of the response
function. In any dimension the response function decays very fast to zero showing no aging
in the asymptotic long-time regime. Indeed, in three dimensions we see thatG(t, tw) decays
like t−3/2 for long times and then the integrated response function decays ast−1/2. This is
an indication of the short-time memory of the system. In the context of glassy dynamics
this indicates that the LP model has no anomaly in the response function [22].
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Figure 8. The correlation function versus(t−tw)/tw in three dimensions andT = 0.1. Different
waiting times are shown,tw = 1000, 300, 100, 30, 10, 3, 1. For times larger than 1, all of them
merge in one curve except fortw = 1 (the curves on the left) which is too short.

5.4. The fluctuation dissipation theorem

Once we know the values of the correlation and response functions, we can study the
fluctuation–dissipation ratio,

X(t, tw) = G0(t, tw)
∂C0(t,tw)

∂tw

. (62)

This ratio is equal to 1 in equilibrium (recall that, by definition, a factorT has been
absorbed in the response function). Roughly, we find thatX(t, tw) is approximately equal
to 1 for t− tw < tw, showing that the system is in local equilibrium in the stationary regime.
For timest − tw larger thantw theX decays to zero very fast. We find the same qualitative
behaviour in one and three dimensions. This is expected in the absence of anomaly since
the response function decays very fast to zero in this regime. If we look more carefully (see
figure 10), we find that there are two different regimes. For small values oftw (tw < t∗ ' 1
when the lattice starts to be filled by particles), the value ofX decreases monotonically; but
for larger values oftw, X increases witht until it reaches a maximum and after decreases
very fast. Numerically, we can extrapolate that fortw tending to infinity andt − tw < tw
(i.e. in theβ regime) the 1−X(t, tw) tends to zero as(t − tw)−1.
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Figure 9. The response function,G(t, tw), versust − tw in three dimensions and forT = 0.1.
Different waiting times are shown. From top to bottomtw = 10, 100, 1000, 10 000.

Using the fact that for long times the response function decays ast−3/2 and that the
X(t, tw) ' 1, we can conclude that the correlation function decays to the plateau with a
power lawt−1/2. This result has been checked directly by fitting the decay of the correlation
function to the plateau (see below for an estimate of the value of the plateau) for large values
of tw.

We can also study the evolution ofX(t, t ′) as a function ofC(t, t ′). Qualitatively we
find very similar results in all dimensions: in theβ regimeX is close to 1 while in the
α regime it decays very fast to zero. The one- and three-dimensional cases are depicted
in figures 11 and 12 respectively. Interestingly enough in the three-dimensional case we
also find (figure 12) that all the curves (excepttw = 1 which is too short a time) cross at
C∗ = Cnorm(t, tw) ' 0.75 (the value ofC∗ increases for lower temperatures) corresponding
to a value ofX∗ ' 0.25 . The valueC∗ corresponds to the value ofCnorm(tw, t) in the plateau
in theβ regime (see figure 7). It is possible to make all different curves (corresponding to
different values oftw) collapse in a universal one. We find that the scaling law,

X(t, tw) = X((C∗ − Cnorm(t, tw))t
0.4
w ) (63)

for Cnorm(tw, t) < 0.75 nicely fits data for all different values oftw (inset in figure 12). We
can interpret naturally the value ofX in the two regimes as a ratio between the temperature
of the system and an effective temperatureTf . For Cnorm(tw, t) > C∗ we findX ' 1 and
the effective temperature of the system coincides with the temperature of the thermal bath.
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Figure 10. 1−X(t, tw) versust − tw . Different waiting times are shown. From top to bottom
tw = 1, 3, 10, 30, 100, 300, 1000, 10 000. The straight full line shows1

t−tw behaviour.

In this β regime the system is in local equilibrium. ForCnorm(tw, t) < C∗ we findX ' 0
which means that the effective temperature is infinite. This is a confirmation of the results
obtained in section 5.2 interpreted within the kinetic-domain growth scenario. In that case
it was found that the effective temperature outside equilibrated domains was also infinite.
Note that the definition of an effective temperature is not free of inconsistencies in the most
general case and there is no evidencea priori that both effective temperatures (in theα
regime) for the one-time quantities and the effective temperature obtained for the two-time
quantities coincide. A result of this type was found in the Backgammon model for the
physical interpretation of the violation fluctuation–dissipation ratio [21].

5.4.1. Correlation between replicas.Up to now we have found qualitatively similar results
in the off-equilibrium behaviour in one and three dimensions. The question arises if it is
possible to infer from the dynamics the existence of a condensed growing phase which
could distinguish the one-dimensional from the three-dimensional behaviour at finiteT . It
has been recently suggested [22] that it is possible to characterize the dynamical behaviour
in terms of the overlap between two replicas which start in the same initial configuration
and follow different noise realizations. We have analysed the quantity,Q(tw, t)−Qeq where
Qeq = ρ2

eq for different values oftw. In a disordered phase we expect thatQ(tw, t)−Qeq

should decay to zero for long times because the two replicas depart one from each other
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Figure 11. X(t, tw) versusCnorm(t, tw) in one dimension atT = 0.0001. Different waiting
times are shown. From top to bottomtw = 1000, 300, 100, 10.

even if they are at the same initial condition attw. This is the behaviour we find in
one dimension (figure 13). In the three-dimensional case, in the condensed phase (see
figure 14), the situation is different. Now the two replicas remember they were in the
same configuration attw and do not depart indefinitely one from each other. The system
is then constrained to follow something similar to gutters or channels in phase space [22].
Intuitively it is not difficult to interpret this result in terms of a domain-growth process. We
already know that the dynamics of the LP model is essentially dominated by the growth
of correlated domains. In the one-dimensional case domains appear and disappear in time
because the system is in the disordered phase. In this case the typical length of domains
grow in time (we are at low temperatures) but domains can always appear and disappear.
The pattern structure of domains is in some sense continuously changed in time. In the
three-dimensional case, once domains start to grow, they are not destroyed again. During
the condensation process the pattern structure of domains is essentially unchanged and it is
only rescaled in time. Consequently the two-replicas overlapQ(tw, t)−Qeq does not decay
to zero for long times.
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Figure 12. X(t, tw) versus 1− Cnorm(t, tw) in three dimensions atT = 0.1. Different waiting
times are shown. From bottom to toptw = 1, 3, 10, 30, 100, 300, 1000, 10 000. In the inset we
show the collapse of the data using the scaling relation equation (63).

6. Conclusions

We have analysed in detail the dynamical properties of the LP model originally introduced
to understand the thermodynamic properties of hard-spheres lattice gases in the spherical
approximation. From the viewpoint of the dynamics this is an interesting model because
it is exactly solvable allowing a detailed investigation of the off-equilibrium scenario. The
model has no built-in disorder and slow dynamics appears as a consequence of the short-
range dynamical constraints present in the system. The dynamics of this model shares a
large number of features with the off-equilibrium dynamics of the spherical SK model [15]
where dynamics is driven by the macroscopic condensation of the system on the disordered
ground state. This gives support to the result that disorder is not an essential ingredient for
the dynamical glassy scenario [2, 3] to be valid.

We have presented a detailed investigation of the dynamical equations of the model
by considering the one- and two-time quantities. One advantage of the model is that it
includes short-range effects which are not present in other type of mean-field models like
the spherical SK model [15]. If the initial configuration has density far from its equilibrium
value then there is a short-time regime where the system is filled very fast in a spatially
uncorrelated way. The typical timet∗ for this filling process is of order 1. It is only after
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Figure 13. The correlation between replicas,Q(t, tw) −Qeq againstt − tw in one dimension
andT = 0.0001. Different waiting times are shown. From top to bottomtw = 1, 10, 100, 1000.

that time that slow relaxation starts when the system is spatially correlated and needs to
reorganize large regions in order to increase its density.

For values of time larger thant∗, we see that the dynamics of the model shows striking
similarities to the kinetics of domain growth of ferromagnets with non-conserved dynamics
[19]. This is expected since the dynamics proposed in equation (13) corresponds to the
coarsening dynamics in the so-called model B in phase-ordering kinetics. In particular we
have seen that for length scales smaller than a typical correlation lengthξ (which grows
in time) the system is in local equilibrium and spatial fluctuations are determined by the
equilibrium temperature. Above the correlation lengthξ the system is completely disordered,
hence the typical temperature associated to spatial fluctuations is infinite. The correlation
length ξ is an accurate measure of the typical size of the growing domains. It would be
interesting to investigate the dynamics of the LP model with the conserved dynamics of
kinetic growth. In this case, we expect that a similar scenario would apply but with different
exponents.

Further support to this domain-growth scenario has been obtained from the study of the
two-time quantities. In particular we find that off-equilibrium relaxation proceeds in two
well defined steps: a fastβ relaxation process where the fluctuation dissipation relation
is obeyed, followed by a slowα process where time-translation invariance is lost and the
fluctuation dissipation ratio is zero. The physical meaning of theα andβ process is quite
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Figure 14. The correlation between replicas,Q(t, tw) −Qeq against total menus waiting time
in three dimensions andT = 0.1. Different waiting times are shown. From bottom to top
tw = 1, 3, 10, 30, 100, 300, 1000.

appealing in terms of domain-growth kinetics. The fastβ process is associated with local
rearrangements of densities inside domains whereas the slowα process is associated with
the growth of the typical size of these domains. On the other hand, the response function
shows no aging and decays very fast to zero. This is the scenario of glassy dynamics without
anomaly in the response function typical of glassy systems with short-term memory. A study
of the replica–replica overlap has also revealed that the growth mechanism is different in
the presence or absence of condensation transition. In one dimension where there is no
condensation phase transition (the system is always in the disordered phase) the domains
appear and disappear in time even if their typical size increases. In the three-dimensional
case the domains always tend to grow and the pattern structure of domains is always
maintained. In this last case we find that limtw→∞ limt→∞Q(tw, t) is finite [22].

We wish to note that the relaxation of the density, as well as correlation functions,
does not display the phenomena of stretching characteristic of glasses. This is due to the
oversimplification inherent to the model where only entropy barriers are introduced through
global constraints (while in the classical hard-spheres model constraints are always local).
It would be very interesting to introduce some kind of local constraint which could restore
the main features observed in real glasses. In this direction, it would be quite interesting
to extend this research by considering the LP model with the dynamics recently proposed
by Dean [23] where local densities can never become negative, a feature which is not
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considered in the present dynamics. This requires the introduction of noise correlated with
the local densities, a kind of local constraint. Also it would be interesting if such a dynamics
could be exactly solved.
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